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Fitting Stationary Linear and Nonlinear Time Series Models to
Nigerian Rainfall Data

Akeyede, L'and Yahya, W.B.

Abstract

Several time series modeling techniques assume linear relationship
among the variables. However in some situations, variations among
data are irregular and difficult to be accurately modeled. Linear
relationship and their arrangements for describing the behavior of
such data are inadequate. Since many real life data such as rainfall
are nonlinear, thus there is need to investigate which models can best
capture linear and nonlinear data. This paper examined the
performances of the following nonlinear time series model: Self
Exiting Threshold Autoregressive (SETAR), Smooth Transition
Autoregressive (STAR) and Logistic Smooth Transition
Autoregressive (LSTAR) models in fitting general classes of linear
and nonlinear autoregressive cases at different sample sizes. The
relative performances of the models were examined within the
context of stationarity, and compared with linear Autoregressive
(AR). The LSTAR was the best as sample size increased for different
nonlinear autoregressive functions except in polynomial function
where SETAR models out-performed others. The performances of the
four fitted models increased as sample sizes increased. The
application of aforementioned models was demonstrated on the
monthly rainfall records of 1974-2013 in Nigeria. SETAR model
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fitted best to the data and LSTAR was the best when the data was
transformed to nonlinear.

Keywords: Stationary, Linear, Nonlinear, Time Series, Nigerian
Rainfall Data

Introduction

A time series is a sequence of data points, measured typically at
successive points at uniform time intervals. Time series data is an
array of time and numbers. In agriculture, records of annual crop and
livestock production, and export and import sales etc. are recorded.
While in ecology, records of the abundance of animal species are
considered. The list of areas in which time series are studied is
virtually endless. In meteorology, observation of variables such as
temperatures, wind speed, relative humidity, rainfall, etc. were taken
in different units of time. Of all the meteorological variables, rainfall
is one of the most complex and difficulty elements to understand and
model owing to its wide range of variability both in time and scale
(French et al., 1992; Akeyede et al, 2015). The complexity in the
processes of rainfall generation and ever changing climatic
conditions has made its quantitative prediction a difficult task (Hung
etal., 2008; Abdulkadir et al., 2012). The behavioral pattern existing
within the rainfall record is highly non-linear. Thus, sophisticated
modeling tools are required. Time series analysis is generally used to
model the stochastic mechanism that gives rise to observation series
and to forecast the future values of a series based on the previous
information. Usually, traditional time series analysis assumed
linearity and stationarity among the variables. However, there have
been great concerns in understanding the nonlinear and non-
stationary time series models in several practical issues. The reason is
that many real world problems do not satisfy the assumptions of
linearity and/or stationarity. For Instance, the great complexities and
variability that exist within the meteorological data requires further
research beyond approximate linearity. Therefore, there is strong
need to explore the theory and applications for nonlinear models in
modeling meteorological (such as rainfall) records. Generally, time
series analysis has a number of nonlinear features such as cycles,
asymmetries, bursts, jumps, chaos, thresholds, heteroskedasticity,
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etc. The type of models that can be cast into this form are presented by
Tong (1990), Granger and Terasvirta (1993), Franse and van Dijk
(2000) and Tsay (2010). This study therefore considers some linear
and nonlinear time series models and investi gates the performance of
these models in fitting linear, tri gonometry, exponential and
polynomial forms of autoregressive (AR) function on rainfall
records. The goodness of fit for each model with information criteria
was also considered in detail. A simulation study was carried out to
verify the finite sample properties of the models for stationary data.
The relative performances of each model were assessed using mean
square error (MSE) and Alkaike Information Criteria (AIC).

The main aim of this study, therefore, is to suggest simple linear and
nonlinear models stated earlier that can be fitted to rainfall data
generated from general classes of linear and nonlinear second order
autoregressive model. Its performance in finite sample cases was
evaluated by simulation.

Methodology

Performance of autoregressive models such as SETAR, STAR and
LSTAR were investigated on different classes of linear and nonlinear
autoregressive time series by testing it on rainfall record obtained
from Nigerian Meteorological Agency. The following describes all
the criteria adopted in this present study

Self-Exciting Threshold Autoregressive (SETAR) Model
The threshold autoregressive (TAR) models are extension of
autoregressive models that permit changing of parameters in the
model according to the value of an exogenous threshold variable S
Ifthe past value of means S, =Y is substituted, then it is called Self-
Exciting Threshold Autoregressive model (SETAR). Some simple
cases that are considered in this study are shown in Equations 1 and 2.
TAR Model
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Where d is the delay parameter and r is threshold value that initiate the
changes between two different regimes. The threshold parameters
satisfy the innovation within the ith regime e; is a sequence of
identically independent normal random variables with zero mean and
constant vari::mce(fi2 < (i = 1,2).The overall process Yt, is non-
linear when there are at least two regimes with different linear
models. The simplest class of TAR models is the Self-Exciting
Threshold Autoregressive (SETAR) models of the order p that was
introduced by Tong (1983) and specified to order 2 as in Equation 2.
The popularity of SETAR models is due to their relatively simplicity
to specify, estimate and interpret as compared to many other
nonlinear time series models in existence.

Smooth Transition AR (STAR) Model

The conditional mean equation is not continuous in the SETAR
model as one of its critics. The thresholds (rj) are the discontinuity
points of the conditional mean function pt. In an attempt to resolve
this criticism, researchers proposed smooth TAR models (Chan and
Tong, 1986; Terasvirta, 1994). A time series Yt follows a 2-regime
STAR (p) model of the form

Vi=co+ Xh  PoiYei+F (YL:_—A) (e + X0, 01:Y,4) + e (3)

d = delay parameter Aand s are parameters representing the location
and scale of model transition, and F(-) is a smooth transition function.
Practically, F(+) often assumes one of three forms such as logistic,
exponential or cumulative distribution function. The conditional
mean of a STAR model is a weighted linear combination between
Equations 4 and 5.

Hip = co + E?:l Bo.iYe—i (4)

fze = (co + €1) + XF_ (Do + 01)Ye (5)

Equations 4 and 5 determine the properties of STAR model whose
prerequisite for the stationary is that all zeros of both AR polynomials
are outside the unit circle. In STAR model, the conditional mean
function is differentiable as compared to TAR model. Although the
transition parameters Aand s of a STAR model are difficult to
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estimate is some cases. However, most empirical studies indicate that
standard errors of Aand s are quite large, resulting in 7 ratios of about
one (1.0) (Terasvirta, 1994). This uncertainty result into various
complications in interpreting the results of STAR model.

Logistic Smooth Transition Autoregressive (LSTAR) Model
General model for a logistic smooth transition autoregressive model
of order p [LSTAR(P)] model is as given in Equation 6.

Vi=F(r.ccYa)=(1+exp—{y(¥,_4— APt (6)

The coefficienty,y > 0is the smoothness parameter and the scalar ¢ is
the location parameter and d is known as the delay parameter. Note,
the variable d > 0 in model.

Criteria for Assessment of the Study

The goodness of fit for each model was assessed using common two
criteria in time series, Mean square error and AIC. The model with
lowest criteria is the best among the models for the simulated data.

Alkaike Information Criteria

The criteria to determine the best model of autoregressive process are
likelihood-based. For instance, the well-known Akaike information
criterion (AIC) (Akaike, 1973 cited by Tsay, 2010) is defined in
Equation 7.

AlIC = fi In (likelihood) + f (number of parameters) (7)

Where the likelihood function is evaluated at the maximum-
likelihood estimates and » is the sample size.

Mean Squared Error

The values of mean squared error (MSE) measure the average of the
squares of the "errors", that is, the difference between the estimator
and what is estimated. If ¥is a vector of estimated series, and Y is the
vector of the true values, thus the estimated MSE is given as Equation

8 .
MSE = 232 (Y - Y2 (8)
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Selection Rule

The MSE and AIC for » = 50, 70, 100, 130, 150, 180, 200, 250, 300
and 400 for each case models were computed and the specific model
that has the minimum criteria values was selected as the best among
others. In this analysis, only the 2" order of autoregressive model was
considered in each case.

Models Selected For Simulation

The data are generated from several linear and nonlinear 2" orders of
general classes of autoregressive models expressed as given below.
Each of the models is subjected to 1000 replication simulation at
different sample sizes for stationary data structure.

Model I: AR(2): Y,; = 0.3Y};_, — 0.6Y}—, + &

Model IT: TR(2): Yy = 0.3sin(Y};_,) - 0.6c0s(¥y; o)+ &

Model I EX(2): Yy = 0.3V, o+ exp(-0.6¥, ) + &

Model IV:  PL(2): Y,=03Y2, — 0.6¥,; +e,

Y,i~N(0,1)ande, ~N(0,1) for stationary series and Y,;~N(2000,20)ande,;~N(1000,10),
t=1,2,..50,150 and 300.i = 1,2, ...,1000

The models 1, II, 11T and IV are linear (AR), trigonometry (TR),
exponential (EX) and polynomial (PL) autoregressive functions
respectively with coefficients of Y, being 0.3 and Y, being -0.6. The
simulation studies investigate the performance of SETAR, STAR and
LSTAR models for fitting different general classes of linear and
nonlinear autoregressive time series stated above. Effect of sample
size and the stationarity of the models were examined on each of the
general linear and nonlinear data simulated.

However, innovation (error), e, is often specified as
independent and identically normally distributed in autoregressive
modeling. The normal error implies that the stationary time series is a
normal process. This indicates that any finite set of time series
records are jointly normal. For example, the pair (Y,Y,) and
(Y,.Y,Y, has bivariate and trivariate normal distribution
respectively. This thus forms one of the basic assumptions of
stationary data. However, the data will be generated under white
noise assumption of stationarity and when the stationarity
assumption is violated for order of past responses and random error
terms to see behavior of the models in each case. In this study, one
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thousand (1000) replications were adopted to ensure the stability of
the models estimations at different combinations of sample size (n)
and models' types. The white noise assumption of the error term was
also observed to make the data simulated be stationary. Rainfall data
simulated were fitted to each of the model as shown in the goodness
of fit model in Tables 1-4. Each of the created data were replicated
1000 times using tsDyn Package in R software

Results and Discussion

The performances of the fitted models on the basis of the two criteria
of assessment were displayed in Tables 1-4. Table ] shows the
goodness of fit test for the four models (AR, SETAR, STAR and
LSTAR) for model I (linear function) as described in Section 2.2.1
with the average values of MSE and AIC of 1000 replication
simulated from each model at various sample sizes. The results
obtained for MSE and AIC were graphically represented in Figures
la and 1b respectively. The best fit to model I is AR having the least
values of both MSE and AIC at sample size n = 50 followed by STAR
model. However, with increase in sample size (sec Table 1) the
performance of the four fitted models increase as the magnitude of
MSE and AIC keep decreasing.

Table 1. Performances of the Fitted Models on the Basis of Mean Square Error
anshApe Criteria for modeS AIC

Size(n) AR SETAR STAR LSTAR| AR SETAR STAR LSTAR

50 10034 1.0704 1.0950 1.1162 | 12435 22551 14.9486 15.3815
80 1.0007  1.0632 1.0743  1.0769 | 1.0823 1.7752 103405 | 5.4199
100 09781 09482 0.9844 1.0341 | 0.6519 0.5120 5.3006 13.4578
130 0.9000 09326 09128 1.0160 |-1.9453 0.0118 -0.3022 13.1352
150 0.8841 09265 09036 1.0067 | -2.0358 -0.1791 -1.5080 12.5703
180 0.8378 09124 09223 1.0010 |-3.0098 -0.3771 -1.6924 11.2028
200 0.8316 09021 0.8507 0.8999 |-3.5045 -0.4642 -23415 9.0534
250 0.8127 0.8788 0.8568 0.8820 | -4.0992 -0.7922 -3.1600 8.6308
300 0.8108 0.8502 0.8299 0.8439 |-4.1467 -0.8058 -3.6287 8.5844
400 0.8076 0.7704 0.8081 0.8238 |-5.1515 -1.0361 -4.9978 2.4269
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Figure 1a. MSE of the fitted models on model I
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Figure 1b. AIC of the Fitted Models on Model I

More so, the best fit to model II (trigonometric function) is SETAR
having the least values of both MSE and AIC at sample size n = 50.
With increase in sample size (see Table 2) the performance of the four
other fitted models increase as the magnitude of MSE and AIC keep
decreasing. This indicates that the models performed excellently with
increase in sample size.
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Table 2. Performances of the Fitted Models on the Basis of Mean Square
Error and AIC Criteria for model 2

Sample MSE AIC -

Size(n) AR  SETAR STAR LSTAR AR SETAR STAR LSTAR

50 1.8778  1.0856  1.2555 1.1032 | 393347 25, 1926 34.9504 277112
80 1.2878  1.0419 1.1979 1.1038 |32.0152 22,1599 25.8792 25.0232
100 12410 1.0201 1.0322 1.1032 245778 17.8963 20.0044 19.6159
130 11213 1.0013 1.0253 1.0252 20.7725 13.6752 16.3612 14.3609
150 1.0942 09954 1.0195 0.9935 20.5946 11.9736 12.7373 12.8144
180 1.0770 09837 1.0016 09838 13.8477 11.8879 11.9715 11.7373
200 1.0211 09683 0.9935 09008 |9.9183 10.6524 109698 6.6653
250 1.0123 09399 09871 08618 9.7873 85465 88975  6.4006
300 09988 09341 09838 0.8469 |9.6550 6.5681 5.6446 3.0428
400 09119 09106 08472 0.8401 |7.5899 4.6985 55609 1.1264

50 100 150 20 280 300 350 400

Sanple Size
Figure 2b. AIC of the Fitted Models on Model II

From the results in Figures 2a and 2b, it was observed that LSTAR is
fitted best to trigonometric function at sample sizes below 200 based
but LSTAR is the best at sample size above 200 based on the two
criteria. Meanwhile STAR competes well with SETAR as sample size
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increases. In model III (exponential function), Figures 3a and
3bindicated that STAR and LSTAR (see Table 3) performed equally
at sample size below 200 but LSTAR supersede the other three
models as sample size increases and fitted best to the exponential
function at large sample sizes. For model IV (polynomial function),
figures 4a and 4b showed that the best model is SETAR followed by
STAR at sample sizes below 300 and LSTAR as sample size increases
(see Table 4).

Table 3. Performances of the Fitted Models on the Basis of Mean Square Error

odel3

Sample MSE AIC

Size(n) AR  SETAR STAR LSTAR AR SETAR STAR LSTAR
50 15195 12044 15001 1.0843 |29.7012 29.8014 15.1502 17.2593
80 13350 1.0192 1.0173 1.0045 [23.133  20.2449 10.7939 10.7939
100 12870 1.0074 1.0044 09794 | 184658 14855 10.7571 10.6242
130 12570 09973 09968 09735 |17.1489 11.9369 7.8047 7.7358
150 1.1998 6.9802 09794 0.9479 | 158781 8.5940 7.7897  7.7009
180 1.1340 0.9744 09741 09053 | 15518 8.0272 73729 49094
200 1.0932 0.9645 09732 08705 |14.4622 64697 5.6874  0.3905
250 1.0390 0.9593 09391 08555 |13.0971 5.8417 -43047 -6.8908
300 ‘I 0206 09488 0.9238 0.8345 | 12901 49595 53248 -7.5132
400  0.8925 0.9259 0.9:0351 0.8054 |12.5988 3.8493  -9.3038

-10.6848
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Table 4. Performances of the Fitted Models on the Basis of Mean Square Error
and Residual Variance Criterion for model 4

Sample MSE AIC
Size(n) AR  SETAR STAR LSTAR AR SETAR STAR LSTAR

50 15399 1.1077 1.5432 1.7703 |161.2003 143851 50.9901 85.9526
80 15342 10389 13453 1.5884 | 150.8064 9.8809 49.8896 84.5517
100 15231 09812 13399 15007 |158.0353 9.5891 32.481 80.3441
130 15134 09758 12253 14914 |156.004 9.5801 32.4134 76.6701
150 15132 09757 12252 1.3844 |154.5532 83157 324134 74.5517
180 14213 009492 12252 13833 |50.8064 6.6123 32.4134 723378
200 13399 09279 12252 1.1194 |47.0134 -1.6793 324134 30.6764
250 12350 08326 12248 1.0646 |40.8526 -5.8224 324134 30.6619
300 1.01392 0.8202 1.1266 1.0115 |30.2822 -9.4363 17.9162 12.2683
400 1.1222 07461 1.1062 10106 |24.7411 -9.8073 14.0722 10.8421

50 100 180 200 250 300 360 400

Sanple Size

Figure 4a. AIC of the Fitted Models on Model IV
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Figure 4b. MSE of the Fitted Models on Model IV

Application of the Fitted Models on Rainfall Data

The four models were fitted on monthly rainfall records of
(1974-2013) obtained from Nigeria Meteorological Agency
(NIMET), Lagos State Nigeria. Prior to fitting a nonlinear time series
model to the set of rainfal] record, the nonlinearity characteristics of
the data are detected using recommended tests by researchers to
distinguish between linear and nonlinear data sets. For instance
Subba and Gabr (1 980) and Hunnich (1982) used the bi spectrum test.
In this test, the square modulus of normalized bi spectrum is constant
for a linear time series, The hypothesis is based on the non-centrality
of parameters of the marginal distribution of the square moduli. Yuan
(2000) modified the Hunnich's test in such a way that the parameter
being tested under the null hypothesis is no longer but the location
parameters, such as the mean or variance. F urthermore, once a model
is selected, there is need to check if the data is linear. Therefore, good
statistical and diagnostic tests are needed to determine the
nonlinearity in time series data. However in this research, two tests
were used to detect whether the rainfall data isnonlinear or linear. The
tests are Keenan and Tsay F-tests. Both tests are based on time
domain. These have been used by many researchers for the detection
of nonlinearity in time series data (Keenan, 1985: Tsay, 1986). The
data was transformed using logarithmic transformation to ensure
nonlinearity test and the results are shown in Table 5. This shows that
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the null hypothesis of nonlinearity was rejected for the rainfall data
before being transformed but accepted after being transformed using
the two statistical approaches. Table 6 shows the performance of the
models indicated that SETAR is the best to fit the rainfall data
followed by LSTAR. However, when the data is transformed to make
it nonlinear, LSTAR performs better than others based on the three
criteria (of nonlinearity, MSE and AIC).

Table 5 Test of Nonlinearity on Monthly Rainfall in Nigeria (1974-2013)
Nonlinearity Real Data Transformed Data

Test Test-Stat DF p-value Decision | Test-Stat DF  p-value Decision

Keenan 8.1645 24 0.0045 reject 1.4837 24 022390 accept
Tsay F 1.5340 24 00027 reject 1.7870 24 0.09424 accept

Table 6: Performances of the Fitted Models on Monthly Rainfall (1974-
2013)

Real Data Transformed Data
Model MSE AlC MSE AlIC
AR 6022.00 5546.21 2.7770 1858.8900
SETAR 5873.27 4179.52 2.4041 435.0518
STAR 5998.32 4181.63 2.3913 434.7764
LSTAR 5873.29 4181.52 2.3839 432.9900

Conclusion

In this study, the performances of four nonlinear models were
investigated on rainfall records due to its nonlinearity nature. The
best model to fit linear autoregressive function is AR at different
sample sizes of which LSTAR model out performed other models as
the sample size increases with exception of polynomial function
where SETAR model performed better than others. The three
nonlinear models SETAR, LSTAR and STAR have closed
performances in exponential autoregressive function as number of
sample size increases based on MSE and AIC criteria. The



Akeyede, I. and Yahya W. B.: Fitting Stationary Linear... 15

performance of the four fitted models increases as sample size
increases. Finally, it was observed that SETAR model fits best to the
rainfall data and LSTAR was the best when the data is transformed to
nonlinear. The results also showed that the null hypothesis of
nonlinearity of rainfall records was rejected as real data but accepted
as transformed data.
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